Skip to main content
  • People
  • Esse3
  • Online teaching
  • Libraries
Logo Unitn
MyUnitn
MyUnitn

  • Academic calendar
  • E learning
  • Job opportunities
  • Laboratories
  • Staff
DEPARTMENT
CELLULAR, COMPUTATIONAL AND INTEGRATIVE BIOLOGY - CIBIO
  • Department
    • Organization
    • Staff
    • Seminars
    • Job Opportunities
    • Quality
    • Rules and regulation
    • Press room
    • About us
    • How to reach us
  • Didactics
    • Degrees
    • La valigetta del biotecnologo
    • Piano Nazionale Lauree Scientifiche (PNLS)
    • Percorso formazione insegnanti
    • Armenise-Harvard Summer Fellowships
  • Research
    • Programs
    • Laboratories
    • Core Facilities
    • Recent publications
  • Services
    • Teaching services
    • Enrolment and career
    • Other services
  • Third Mission
    • Fundraising
  • International mobility
    • Going abroad
    • Coming to Trento
 
  • Condividi questa pagina
Facebook Google Plus LinkedIn Twitter Mail Whatsapp 
Home | Research | Laboratories | Cell and Molecular Biology | Armenise-Harvard Laboratory of Cell Division

Armenise-Harvard Laboratory of Cell Division

  • Programs
  • Laboratories
    • Cancer Biology & Genomics
      • Armenise-Harvard Cancer Biology & Genetics
      • Armenise-Harvard Laboratory of Brain Disorders and Cancer
      • Bioinformatics and Computational Genomics
      • Biotechnology and nanomedicine
      • Cell Biology and Molecular Genetics
      • Chromatin Biology & Epigenetics
      • Computational and Functional Oncology
      • Experimental Cancer Biology
      • Genomic Screening
      • Radiobiology
      • Metabolism of Cell Growth and Neuronal Survival
      • Molecular Cancer Genetics
      • Protein Crystallography and Structure-based Drug Design
      • RNA Regulatory Networks
      • Stem Cells and Cancer Genomics
      • Translational Genomics
      • Transcriptional Networks
    • Cell and Molecular Biology
      • Armenise-Harvard Laboratory of Cell Division
      • Biophysics and Translational Cardiology
      • Chromosome Segregation Biology
      • Computational Modeling
      • Dulbecco Telethon Prions and Amyloids
      • Molecular and Cellular Neurobiology
      • Molecular Virology
      • Molecular and Cellular Ophthalmology
      • RNA and Disease Data Science
      • RNA Biology and Biotechnology
      • Virus-Cell Interaction
    • Microbiology and Synthetic Biology
      • Armenise-Harvard Synthetic and Reconstructive Biology
      • Artificial Biology
      • Bacterial Genetics & Physiology
      • Computational Metagenomics
      • Microbial Genomics
      • Synthetic and Structural Vaccinology
    • Neurobiology & Development
      • Armenise-Harvard Axonal Neurobiology
      • Dulbecco Telethon Biology of Synapses
      • Dulbecco Telethon Stem Cells and Regenerative Medicine
      • Neural Development and Regeneration
      • NeuroEpigenetics
      • Neurogenomic Biomarkers
      • Stem Cell Biology
      • Transcriptional Neurobiology
      • Translational Neurogenetics
      • Synaptic Plasticity
  • Core Facilities
  • Recent publications

Overview

The ordered series of events leading to the duplication of all cellular components, culminating in the generation of two genetically identical daughter cells via cell division, is known as the cell division cycle. While a fraction of the cells within multicellular organisms divides constantly, the process of genetically programmed cell death (e.g. apoptosis) depletes non-functional or damaged cells from the body. Both the cell cycle and cell death are instrumental for organism to develop and maintain tissue homeostasis. For many years, anecdotal evidence suggested that both processes are interlinked. Our group aims to unravel the molecular circuitry that allows the cross-communication between the cell cycle and cell death machineries. Importantly, as a deregulation of both processes has been causally linked to cancer, we hope that by providing a better understanding of those connections we will contribute to the design of innovative approaches to combat cancer.

Research directions

  • A sensing mechanism to monitor duplication of the cellular components
    Failure in the physical separation of two cells at the end of cell division, i.e. cytokinesis, is one of the most common malfunctions of the cell division cycle, predisposing cells to neoplastic transformation. Strikingly, however, specific cell types in the human body, such as hepatocytes and cardiomyocytes, actively implement cytokinesis failure as part of a developmental program to duplicate their cellular components. Despite this heterogeneity, cytokinesis failure is invariably followed by a reduction in the propensity of cells to commit to additional cell cycles. What enables cells to recognize the occurrence of cytokinesis failure and to restrain their proliferative potential? Centrosome abundance appears crucial for determining the cellular behaviour in response to cytokinesis failure. Centrosomes, the main microtubule organizing centres in the cell, duplicate once per cell cycle, allowing a tight regulation of their numbers. Using a combination of genetic tools, advanced live cell imaging and proteomics, we wish to uncover the mechanisms that allow cells to sense cytokinesis failure, with special attention on the role of supernumerary centrosomes. LEFT: overview of the whole cell: nuclei are stained white, different centrosomal markers are stained red and green. RIGHT: blow-up of the duplicated centrosomes.
    Immunofluorescence staining of a lung adenocarcinoma cell that failed cytokinesis
    Left: overview of the whole cell: nuclei are stained white, different centrosomal markers are stained red and green.
    Right: blow-up of the duplicated centrosomes.

  • Re-invented p53: non-canonical functions in response to cell division errors
    The protein p53, one of the best-known tumour suppressors, has been studied most intensively as a transcription factor responding to acute damage of the DNA. Though cytokinesis failure has been known to activate p53 since the 1970s, surprisingly little is understood about how p53 influences cell fate in response to cell division errors such as cytokinesis failure or the mis-segregation of individual chromosomes. By combining classic biochemistry techniques and next-generation RNA sequencing, we aim to systematically dissect p53 activation in response to cell division errors. This project will reveal a hitherto underappreciated role of p53 in tumour suppression.

Group members

  • Luca Fava, PI
  • Alessia Mattivi, laboratory manager
  • Florian Bellutti, postdoctoral fellow
  • Matteo Burigotto, postdoctoral fellow
  • Iva Dzhilyanova, PhD student
  • Vincenza Vigorito, PhD student
  • Selene Tessadri, predoc fellow
  • Stefano Li Veli, MSc student

On-going Collaborations

  • Andreas Villunger, Medical University of Innsbruck, Austria
  • Andreas Strasser, WEHI, Australia
  • Stefano Maffini & Andrea Musacchio, MPI Dortmund, Germany

Funding

  • 2020-2025, AIRC
  • 2019-2022, PRIN MIUR
  • 2017-2022, Armenise-Harvard Career Development Award

Selected publications

Ghetti G, Burigotto M, Mattivi A, Magnani G, Casini A, Bianchi A, Cereseto A, Fava LL* (2021) CRISPR/Cas9 ribonucleoprotein-mediated knockin generation in hTERT-RPE1 cells. STAR Protocols. 2, 100407

Burigotto M, Mattivi A, Migliorati D, Magnani G, Valentini C, Roccuzzo M, Offterdinger M, Pizzato M, Schmidt A, Villunger A, Maffini S, Fava LL* (2021) Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26. The EMBO journal. 40, e104844

Sladky VC, Knapp K, …, Fava LL, …, Alain de Bruin & Andreas Villunger (2020) E2F-Family Members Engage the PIDDosome to Limit Hepatocyte Ploidy in Liver Development and Regeneration. Developmental Cell 52, 1-15

Liccardi G, Ramos Garcia L, …, Fava LL, …, Bianchi K & Meier P (2019) RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Molecular Cell 73, 413-428

Fava LL*, Schuler F, Sladky V, Haschka MD, Soratroi C, Eiterer L, Demetz E, Weiss G, Geley S, Nigg EA & Villunger A* (2017) The PIDDosome activates p53 in response to supernumerary centrosomes. Genes & development 31, 34–45

Haschka MD, Soratroi C, Kirschnek S, Hacker G, Hilbe R, Geley S, Villunger A* & Fava LL* (2015) The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nature communications 6, 6891

*=corresponding authors

For a complete list see: https://www.ncbi.nlm.nih.gov/pubmed/?term=fava+ll

Luca Fava, PI
via Sommarive n. 9, 38123 Povo (TN)
Ph. 
+39 0461 285215
Fax 
+39 0461 283937
luca.fava [at] unitn.it